April 20, 2017 From rOpenSci (https://deploy-preview-334--ropensci.netlify.app/blog/2017/04/20/randgeo/). Except where otherwise noted, content on this site is licensed under the CC-BY license.
randgeo generates random points and shapes in GeoJSON and WKT formats for use in examples, teaching, or statistical applications.
Points and shapes are generated in the long/lat coordinate system and with appropriate spherical geometry; random points are distributed evenly across the globe, and random shapes are sized according to a maximum great-circle distance from the center of the shape.
randgeo was adapted from https://github.com/tmcw/geojson-random to have a pure R implementation without any dependencies as well as appropriate geometry. Data generated by randgeo may be processed or displayed of with packages such as sf, wicket, geojson, wellknown, geojsonio, or lawn.
Package API:
rg_position
- random position (lon, lat)geo_point
- random GeoJSON pointgeo_polygon
- random GeoJSON polygonwkt_point
- random WKT pointwkt_polygon
- random WKT polygonInstall randgeo
- and we’ll need a few other packages for examples below.
install.packages("randgeo")
install.packages(c('leaflet', 'lawn'))
library(randgeo)
Functions that start with geo
are for creating GeoJSON data in JSON format.
If you want to create an R list or data.frame, you can use jsonlite::fromJSON
.
Evenly distributed across the sphere. The bbox
option allows
you to limit points to within long/lat bounds.
geo_point()
#> $type
#> [1] "FeatureCollection"
#>
#> $features
#> $features[[1]]
#> $features[[1]]$type
#> [1] "Feature"
#>
#> $features[[1]]$geometry
#> $features[[1]]$geometry$type
#> [1] "Point"
#>
#> $features[[1]]$geometry$coordinates
#> [1] 105.95999 -46.58477
#>
#>
#> $features[[1]]$properties
#> NULL
#>
#>
#>
#> attr(,"class")
#> [1] "geo_list"
Centered on a random point, with default maximum size
geo_polygon()
#> $type
#> [1] "FeatureCollection"
#>
#> $features
#> $features[[1]]
#> $features[[1]]$type
#> [1] "Feature"
#>
#> $features[[1]]$geometry
#> $features[[1]]$geometry$type
#> [1] "Polygon"
#>
#> $features[[1]]$geometry$coordinates
#> $features[[1]]$geometry$coordinates[[1]]
#> $features[[1]]$geometry$coordinates[[1]][[1]]
#> [1] -138.49434 -25.11895
#>
#> $features[[1]]$geometry$coordinates[[1]][[2]]
#> [1] -145.95566 -28.17623
#>
#> $features[[1]]$geometry$coordinates[[1]][[3]]
#> [1] -145.87817 -28.74364
#>
#> $features[[1]]$geometry$coordinates[[1]][[4]]
#> [1] -146.61325 -28.59748
#>
#> $features[[1]]$geometry$coordinates[[1]][[5]]
#> [1] -139.18167 -31.07703
#>
#> $features[[1]]$geometry$coordinates[[1]][[6]]
#> [1] -140.88748 -31.24708
#>
#> $features[[1]]$geometry$coordinates[[1]][[7]]
#> [1] -143.50402 -33.93551
#>
#> $features[[1]]$geometry$coordinates[[1]][[8]]
#> [1] -146.48114 -30.43185
#>
#> $features[[1]]$geometry$coordinates[[1]][[9]]
#> [1] -144.68315 -35.45465
#>
#> $features[[1]]$geometry$coordinates[[1]][[10]]
#> [1] -157.58084 -24.52897
#>
#> $features[[1]]$geometry$coordinates[[1]][[11]]
#> [1] -138.49434 -25.11895
#>
#>
#>
#>
#> $features[[1]]$properties
#> NULL
#>
#>
#>
#> attr(,"class")
#> [1] "geo_list"
Visualize your shapes with lawn.
lawn::view(jsonlite::toJSON(unclass(geo_polygon(count = 4)), auto_unbox = TRUE))
Functions prefixed with wkt
create random Well-Known Text (WKT) data. These functions
wrap the GeoJSON versions, but then convert the data to WKT.
Random point:
wkt_point()
#> [1] "POINT (179.8795330 -29.1106238)"
Random polygon:
wkt_polygon()
#> [1] "POLYGON ((-60.0870329 -12.9315478, -61.5073816 -25.3204334, -62.6987366 -24.5766272, -64.1853669 -24.0497260, -67.7152546 -27.4752321, -68.4190340 -26.9510818, -67.6018452 -21.5489551, -64.3083560 -21.6772242, -63.1471630 -21.9415438, -64.1137279 -14.2398013, -60.0870329 -12.9315478))"
Example of geospatial data manipulation, using randgeo
, leaflet
and
lawn
.
Steps:
library(randgeo)
library(lawn)
library(leaflet)
generate random data
set.seed(5)
polys <- randgeo::geo_polygon(count = 2, num_vertices = 4, bbox = c(-120, 40, -100, 50))
Get intersection of polygons
polysinter <- lawn::lawn_intersect(polys$features[[1]], polys$features[[2]])
Map polygons
polysinter %>% lawn::view()
Generate random points - clip points to polygon
pts <- randgeo::geo_point(count = 500, bbox = c(-120, 40, -100, 50))
pts <- lawn::lawn_within(
points = lawn_featurecollection(pts),
polygons = lawn_featurecollection(polysinter)
)
Draw polygon + points on map
polysinter %>%
view() %>%
addGeoJSON(geojson = jsonlite::toJSON(unclass(pts)))
Let us know what you think! randgeo
doesn’t have any revdep’s on CRAN yet, but
is being used in one package on GitHub.